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ABSTRACT

The dynamic stress intensity factor history for a half plane crack in an

,*.- otherwise unbounded elastic body, with the crack faces subjected to a
traction distribution consisting of a pair of point loads that move in a

direction perpendicular to the crack edge, is considered. The exact

expression for the mode I stress intensity factor as a function of time for

any point along the crack edge is obtained by extending a procedure recently

Introduced by Freund P1. The method of solution is based on integral

., -. transforms methods and the theory of analytic functions of a complex

'- variable. Some features of the solution are discussed and graphical results
.- '--Accesion For

for various point load speeds are presented.
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1. INTRODUCTION

A general procedure has been introduced by Freund [11 for determining

the stress intensity factor histories for a class of three dimensional

elastodynamic crack problems. As an illustration of the procedure, Freund

studied a half plane crack in an otherwise unbounded elastic solid, with the

crack faces subjected to a pair of line loads that are suddenly applied

along a line perpendicular to the crack front. Because the approach is

novel, its range of applicability has not yet been established. Here, the

extension of the procedure to situations with moving loads on the crack

faces is considered. This distribution consists of a pair of point loads that

suddenly begins to act at the edge of the crack, and moves at a constant

velocity along the crack faces in a direction perpendicular to the crack

edge. The corresponding two dimensional problem was studied by Ang [2].

. A three dimensional problem that is related to the one in this paper is that

of a point load traveling on the surface of an elastic half space. This

problem was analyzed by Gakenheimer and Miklowitz [31, who considered all

point load speeds, i.e. subsonic, transonic and supersonic. For the purposes

of this paper, attention is restricted to subsonic point load speeds, that is,

the speed is less than the characteristic Rayleigh wave speed of the

material. The analysis for higher speeds offers no added mathematical

difficulty.

In section 2, the general formulation of the boundary value problem is

*' presented for the three dimensional crack face tractions resulting in mode

I
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I deformation. Section 3 describes the general approach to bolving the

problem by means of transfom methods. In section 4, the formal solution

to the particular traction distribution is obtained by means of the

Wiener-Hopf decomposition method. In section 5 the dynamic stress

intensity factor history is extracted by making use of the asymptotic

properties of transforms, the Cagniard-deHoop method, and the convolution

* -theorem for transforms. A discussion of the results is given in section 6.

2
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:2. GENERAL FORMULATION

In vector notation the Navier equation governing the displacement vector

u for an isotropic elastic solid is written as

= C2
1V(Vu) - C2

S VX(VXU) (2.0

where c, and cs are the dilational and shear wave speeds, respectively. In

terms of the Lame constants X and jp and the mass density p, the wave

- speeds are given by

C2
1 = (X+2jp)/p = jj/p. (2.2)

It is also useful to introduce the dilatational and shear slownesses a and b,

where a= 1/c, and b= 1/c s . Furthermore, the Rayleigh wave speed of the

elastic material is denoted by cr and its corresponding slowness by r.

A standard approach when solving (2. 1) is to introduce the displacement

potentials (P and 4 through the Helmholtz decomposition of the

displacement vectur, i.e.

u = VTV4 V V =0. (2.3)

0
The scalar potential p is called the dilatational potential and the vector

3
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potential 4'is the shear potential. The divergence free requirement on the

shear potential is necessaryj in order to make the decomposition unique.

The advantage of this decomposition is that the potentials ~Pand 4'satisfy

the uncoupled wave equations

c2
1V 29 C2 SV 2 4'. (2.4)

The linear differential equations (2.4) have the added advantage of lending

themselves to standard integral transform methods. The two potentials

are coupled through the boundary conditions that characterize the problem

to be described.

... . . . .. . .

x
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Figure 1. Geometrical configuration of the elastic solid.
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Consider the elastic body containing a half plane crack depicted in

Figure 1. A right handed rectangular coordinate system is introduced such

that the z axis coincides with the crack front, and the half plane crack

occupies the region W=O, x<0. Attention is restricted to applied tractions

of the form T =Fc.(x,z,t) on =±0 where Cl..>0 corresponds to a tensile

traction. All other components of the imposed traction are zero. The

* function a'.. is prescribed for x<0 and is extended so that a-.. 0 in the

half range x >0. The minus subscript is used to denote a function that is

* nonvanishing in the range x<0. Likewise, the plus subscript will be used

4 to label functions that are nonzero in the half range x>0, but are

* identically zero for x<0. This notation is useful in problems like this one,

*where the transforms of these "half functions" turn out to be analytic

functions of the transform parameter in lower (minus) and upper (plus) half

planes.

Due to the symmetry of the geometry and the applied traction, the

displacement fields satisfy the following conditions:

.4

u-xi-Yzt) U u(xYzt) (2.5)

uz(x,-y,z,t) =uZ(X,y,z,t).

Thus attention can be restricted to the upper half space y > 0.

5
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Furthermore, properties (2.5) imply that ox (xO,z,t) and olz(X,O'z't)

- vanish for all z and t, and that uy(x,O,z,t) u_(x,z,t) where u- represents
the unknown y component of the displacement on the crack faces for x < 0

and u- 0 in the half range x > 0. Hence, the complete set of boundary

- conditions to ba satisfied by the stress field is

0 y(x'o0zit) c ._(x,z,t) 0 o+(xz,t)

xy( (2.6)

rOz(X,O,z,t) 0

u .u(x,O , ) Z' u_(x, Z't

for -oo < x,z < w and 0 < t. The function s+ represents the unknown

normal component of stress oF...,on x > 0, and 0 + 0 for x < 0.

The initial conditions are that the material is stress free and at rest

for t < 0. These are expressed in terms of the displacement potentials by

-(x,Y,z,O) = t(P(x,y,z,O) 9(x,y,z,O) = 3tW(x,y,z,O) = 0 (2.7)

for y > 0. Likewise, the boundary conditions (2.6) can be replaced by their

corresponding representations in terms of q and 1P, which are

"" 6.1,@
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X2p+ 2ji + a [Eai) axqpn f 0

2ay~ + - + a zyx4J - ax4ip1 0 (2.8)

2@ - axzI+ Eyaku- ayIjx] o

+y Ezyx - axzU-

for -oo < x~z < oo and 0 < t. qlx, 41! and kzare the rectangular cartesian

components of'.

7
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3. TRANSFORMS

In order to solve the problem described by the partial differential

equations (2.4), the initial conditions (2.7), and the boundary conditions (2.8),

use is made of Laplace and Fourier transforms. First, the one-sided Laplace

transform is applied to the differential equations and the boundary

conditions, and the initial conditions are imposed. This Laplace transform in

time has the transform parameter s, and is denoted by a superposed hat. For

a function tp(x,yz,t) this transform is given by

~00
E, (xyzs) = J (x,y,z,t) e- s t dt. (3.1)

For the time being, s is taken to be real and large enough so as to be on the

right of the abscissa of convergence of the integral. The dependence on z

and x is then suppressed by applying a pair of two-sided Fourier

- transforms. These transforms have the transform parameters i (s and i s,

* respectively. They are denoted, respectively, by the upper case symbol for

the function with a superposed hat, and the upper case symbol itself, to

W* wit,

~(X, y, s) 0L { (x,yzs) eis~Z dz(32
• (3.2)

,- , -( x,y,,s) ei s x  dx.
,.-00

The introduction of the s parameter into the kernel of the transforms (3.2)

8
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is for algebraic convenience; it takes care of a change of variables that

*l would otherwise be needed at a later point in the analysis.

Due to the wave propagation character of the solution, the strip of

analyticity of the Fourier transforms can be anticipated. Suppose that the

applied tractions are such that o._ vanishes for Izi > zo. Then, at any

* given time t, the region of causality is confined to fzf < z0+ tc I. Thus

. by considering the elementary wave field p = Htt+(z~zo)a] +

H[t-(z-zo)al , where H(-) is Heaviside's unit function, and applying to it

0" the L-place transform, one obtains

"=O(e - s(lzl-zo)a) as IzI (3.3)

This, in turn, implies that the Fourier transform V converges for the strip

Ilm(Q)l<a. Thus $ defines an 3nlytic function of , in the strip of

0convergence. Consequently, one can analytically continue $ to values of

that are not contained in the strip of convergence. At this point in the

analysis it is convenient to restrict C, to this strip. The identity property
04 of analytic functions [4], allows one to restrict ( to the portion of the

. imaginary axis in the interval -a<lm(()<a, Re(()=O. The idea is to

perform the Wiener-Hopf factorization in the plane only, keeping C,

*-- confined to the strip of analyticity of . At a later point in the analysis it

will be essential to analytically extend functions of C, away from the

interval on the imaginary axis and outside the strip.

-q
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The domain of convergence of the Fourier transform in x can also be

anticipated. Suppose that the applied tractions are such that along the

crack faces cf_ is nonzero for indefinitely large values of x in the negative

direction. Then, in this region the integral ¢ will converge provided that

lm( )<O. On the other hand, by definition the applied tractions do not

extend along the positive x direction and thus, the region of causality does

not extend beyond a certain cylindrical wavefront ahead of the crack front.

To be precise, for x>O, the front is centered at the y axis and at any given

time t, has a radius Zo+(X 2 +Z 2)1" 2. Thus, by considering the elementary

wave field 9 = H(t-(zo+ Vx 2 + z2)a) and applying to it the transforms

(3.1) and (3.2) it is found that the final integral converges if

{lm( )}2 - ( 2 <a 2. Therefore the Fourier integral D defines an analytic

function in the strip - + a2  <lm( )<O in the , plane, with C,

restricted to -a < lm(,)< a, Re(,) 0.

The class of problems which is accessible by the solution procedure

outlined in the Introduction , is one in which o5_(x,z,t) is restricted to

having a triple transform which has the separable form.

-LI - (x,zs)ei dzdx - (3.4)
2 -oo -wo S

where m is a real number and T._( ,C,)does not depend on s. The reason for

this will be more apparent in section 5. The requirement (3.4) makes it

10
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possible to perform the final inversion of the dynamic stress intensity

factor by means of the convolution formula for Laplace transforms.

-. *. :The application of the transforms (3.1) and (3.2) to the partial

differential equations (2.4) reduces them to ordinary differential

equations,

- S2<2 = 0 and - S2 2% 0 (3.5)

ay 2  ay 2

where

S=<((,,) =+ + a =(,) =/ +(3.6)

and a=1/c I , b=l/c s are the dilatational and shear slowneses introduced

after (2.2). The complex plane is cut along V/a2 + &2 < Im()! <00, Re(,)

-:;::11: = 0 and J6 -+-7-T < Ilm( ) <oo, Re() = 0 so that Re(o) ) 0 and Re(,) > 0
in the cut plane for each admissible value of t,. With the , plane cut in this

fashion, equations of the type (3.5) have the solutions, bounded as y-+,0 to

preclude waves coming in from remote regions,

ig;.: ¢-e-S~ I e-S }ynsm+2 sm+2 (3.7)

where ={B(),C( ,,),D(,))

Transforming the condition V-'j =0 yields

4111 1-11



-,- iDC + D 0= . (3.8)

It is also necessary to transform the boundary conditions (2.8), which will

yield four more equations. They are

(b2 + 2 2 + 2 2)A + 2i,6B - 2it6D =li-(E_ + z+)

2io<A - _,,B - iC + ( 2 + 2 )D= 0 (3.9)

2i(o<A - ( 2 + 2)B + i ,C + &(D 0

-o<A - iC.B + iDl= U-

V-2

In reducing the equations to this form use is made of the fact that XCd 2 =

P(b2 - 2a 2). Furthermore we have defined U. and E+ as

sm+ 1
L(xz,s)eis(x+(z) dzdx2 " -c i-co

(3.10)

7J J+ ,.(x,z,s)eS( x ,z) dzdx.
--000

The parameter s is absent, by construction, from the five eqations (3.8)

and (3.9). There are six unknown parameters, four constants of integration

• .- A,B,C,D and two sectionally analytic fuctions U and 4., but only five

equations to relate them. One can solve for the four constants of

integration in terms of the two unknown sectionally analytic functions.

12

• -- .7L



-. o

The result is

: - 'C . ', A ( ,t .) = ' I i -2 2 b - 2 ) U _( .

. -2i~b 2 U(,) (3.11)

C(~ 0'- =o
r .--. : -: D ( , , ) = 2 i b - 2 U _( , )

Substituting for these functions into the first equation of (3.9) we obtain

one equation relating the two unknown functions,

- R(&.tDU-( . =,(()~ + Z(&.(~) (3.12)
b2cx

where

R( ,) (b2 + 2( 2 + ,2)]2 4(2 + 2)o( _ (3.13)

This is the modified Rayleigh wave function, that is, it corresponds to the

standard Rayleigh wave function. R(z), when (=O. It is a well established

.. fact [51 that the standard Rayleigh wave function, in a properly cut z plane,

* - has only two zeros, R(±ir)=O where r=I/cr. Thus, the modified Rayleigh

wave function in the properly cut complex plane only has the two zeros

,=_ir, wherer =

Equation (3.12) is a standard Wiener-Hopf equation, and the essence of

13
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the Wiener-Hopf method is to solve for the two unknown sectionally

- analytic functions U. and Z+ from a single equation (3.12). The approach to

be followed in section 4 is actually due to Jones [6]. Since E+ is analytic

in the half plane lm( )>-/ , and U- is analytic in the half plane

lm()<O, (3.12) holds in the strip -if,32 - <+ <0. Furthermore, . is

-: restricted to the interval -a<Im()<a, Re( )=O, so for a fixed value of t

(3.12) can be solved by factorization in the plane alone.

,4
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4. FORMAL SOLUTION

At this point it is necessary to introduce the particlular applied

traction distribution. The present work is concerned with a pair of point

loads that suddenly begins to act at the edge of the crack x=g=z=O and

moves in the negative x direction, i.e. perpendicular to the crack edge, at a

contant velocity v. Thus, we assume that

Cjx,z,t) = - P8(z)8(x+vt) O<V<c r  0.1)

where 6() is Dirac's delta function. The amplitude P has physical

dimensions of force and P>O corresponds to a traction that tends to

separate tte crack faces.

Di latational

Conical 
wavefront

headwave

Shear
wavefrontx

Figure 2. Traces in the x-z plane of the wavefronts resulting from the

application of the tractions (4. 1).
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Dilatational

Conicalwavef ront
I ~Conical -

headwavwe

Shear

wavefront

Figure 3. Traces in the y-z plane of the wavefronts resulting from

the application or the tractions (4.1).

"y

Dilatational
Conical wavefront

headwave

,: .'.C r a c k

faces Shear
wavefront

Figure 4. Traces in the x-y plane of the wavefronts resulting from

the application of the tractions (4.1).

* Figures 2, 3 and 4 indicate the leading wavefronts that result from the

application of the tractions (4. 1). These waverronts have been obtained by

. extrapolation from experience with two dimensional problems in hyperbolic

0 partial differential equations rather than by solving for the displacement

16
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potentials. The wavefronts include spherical dilatational and shear

wavefronts centered at the origin of coordinates (Fig. 2). There are also

two sets of headwaves that form cones with vertices where the spherical

dilatational front meets the z axis, and extend to circles of tangency with

the spherical shear wavefront. The traces of these cones which extend to

the crack faces, as well as ahead of the crack edge, are shown in Figure 2.

Furthermore, there are conical headwaves that intersect the dilatational

Sl., wavefronts on the surfaces y=±O for x<O, and extend to circles of

tangency with the spherical shear wavefronts (Figs. 3 and 4). The

hea 'aves arise since the dilatational waves alone cannot satisfy the

77tiaction free boundiry conditions that exist at the crack faces.

Tra; sforming (4.1) wit th (3. ) and (3.2), it is found that m-I and that

iP I
(4.2)

2mrv ((-ic)

where c- 1/v is the point load slowness. Substituting for _( ,() in (3.12)

one obtains the Wiener-Hopf equation that corresponds to the problem with

:.traction loading (4.1),

P' iP I

b2cx 2 Tv ((-ic)

Only some of the steps involved in the factorization of (4.3) in the

plane will be shown below. To begin, let ?=(2+a2 and note a is some

d~*. 17.t..7



constant in the interval (Oa) since , is being held fixed in the interval

(-ia,ia). The function ox can be factorized as,

I= (2 + a2)1/2 = + iF)/ 2 1( - i-) 1 22 . (4.4)

The semicolon is used to emphasize the fact that t, is being held fixed and

its influence in the factorization procedure is only parametric in nature.

The plus (minus) subscript is used to denote functions that are analytic in

the upper (lower) half plane lm()> -a (<O). The fact that the two planes
.i overlap is no coincidence. Indeed, for (3.12) or (4.3) to have useful

consequences there must be a common strip in which E. and U. exist. In

problems of this sort, one hopes that c+ and u- are such that the inversion

paths of their Fourier transforms satisfy the above requirement, and

proceeds, verifying the initial assumption a postol tyi.

In order to make further progress one must factorize the Rayleigh wave

function R( ;). For this purpose it is most convenient to express R( ,;) in

I.- terms of a function with neither zeroes nor poles and whose limiting value

as I-IT o is unity ([61,pp. 13-15). Such a function is easily constructed
, . from the asymptotic properties of the Rayleigh wave function and

, knowledge of its roots. Specifically, one must make use of the results

that

04R( ;C) =2 2(b2 - a2) + 0(0 as T co (4.5)

18
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and R(,;() has two symmetric roots , = ir , where r = as

discussed at the end of section 3. The function needed is easily seen to be

s)£r ( = (4.6).- :- 
( + 2)

where x=2(b 2 -a 2 ). The function S has the required properties of being

nonvanishing in the finite P plane and being asymptotic to unity for large

values of . In the Appendix it is shown that 5( ;) can be factorized as

S+(;()S_( ; ) where

exp~j. btan-I q]T2Ebj4 J2-a : rdj (4.7)
I (b-2T2)2

The functions S+(L, ) and S_( ;() are analytic and nonzero in the half

planes lm(,)>-a" and lm(,)<a.

After some straight-forward manipulations, (4.3) can be rewritten as

b 2 G_( ; ) ?rv( -ic)

*where

19
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G (-.9)

At this point the factorization is almost complete. It remains to

remove the pole in G+(&;() at =ic. This is accomplished bI' observing that

- ic ic -c

Now the factorization is complete and relationship (4.8) may be

rewritten as

j I, U_(,;C.) iP G+(ic;(,) iP [G+(,;,)-G(ic;,)](. ~~b2 G_( ;r,) 2Trv ( ,-ic) 2Ttv ( ,-ic) +,;).(;,.(. )

!.. -The function on the left hand side of (4.1 1) is analytic in the half plane

- - im( )<0. The function on the right hand side is analytic in the half plane

.lm( ,)>-iJ2a. Since (4.1 1) holds in the strip where the domains of

analyticity of the two functions overlap, the functions are each analytic

continuations of the other. Together they define an entire function E()

(161, p. 37) The function E(&) is to be determined from the behaviour of

the functions U_, Z. and G+ as T 00.

20
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For the class of fracture mechanics problems described in section 2, the

normal stress ci+ on the plane y=O is expected to have the asymptotic

behavior

cr+(x,z,t) - kl(t,z)/J12iFx as x4O +  (4.12)

where kl(t,z) is the dynamic stress intensity factor history at any point

along the crack front. This history will be determined explicitly in the

next section. In light of (4.12), 5+(x,z,s) is also expected to be square

root singular as x 1 0 + for any z. This result can be used in conjuction

with the Abelian theorem regarding asymptotic behaviour of Fourier

transforms [61 to determine the asymptotic properties of T.(,;C,), namely,

lim ,/ /s ei /4 Z+(,;w) = lim /"x-8+(x,z,s) . (4.13)
0o x 4o

Since the right hand side of (4.13) is equal, by (4.12), to a function

@4e~i parametric in s and C,, Z.(;,;t) 0( - 1/ 2) as too. Furthermore, u- is

expected to vanish as xT0 and IG+,= O(ItT as Too.

Therefnre, both sides of (4.11) vanish as I oo. That is, E(,) -+ 0 as

1 too. Ft-m the preceding discussion it follows that E( ) is a bounded

function in the entire t plane. According to Liouville's theorem a bounded

entire function is a constant [41, and therefore E( ) must be identically

21eq°
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zero, i.e. E(,)=O. Equation (4.1 1) can now be solved for Z+ and U_, which

are found to be

P b2  G+(ic;C)G_(,;,)
U-(,;() = -- I

2JTiv IK c-ic

(4.14)
P 1 [G+(ic;() 1

27Tiv ( -ic)[ G+(1;)

This completes the formal solution of the problem. In theory, the exact

solution to the problem is found by taking the triple inverse transforms of
* (4.14).

4
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. 5. INVERSION

Unfortunately, an exact inversion of Z, and U- as given by (4.14) is not

-- evident. This section is concerned with the determination of the stress

intensity factor history, which is given by the asymptotic inversion of Z+

with respect to ,. As mentioned in section 4, the asymtotic behaviour of

as TL loo is intimately related to the behaviour of the double

transform > (x,C), of the normal stress clj(x,z,t) as x 10 . It follows from

(4.12) that the Laplace transform of the dynamic stress intensity factor

history kl(t,z) is simply

I(sz) = lim -2x&+(x,z,s). (5.1)
x1O+

Thus, the double transform of kl(t,z) is found from (4.13) and (4.14) to be

P V/iC+ ( 2 + a 2) 11

1•i(sC,) - .(5.2),,'.:-:~Tr "]' C 2 r )1/215 (iC, ,)

By construction, the function 1(SC) is analytic on the strip -ia< < ia.

* Since the Wiener-Hopf factorization has been completed and the limiting

process that resulted in Kl(s,(.) has suppressed all dependence on the

variable ,. there is no longer any need to restrict ( to this strip. For the
@1

, purposes of inverting this function it will be advantageous to extend the

23
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definition of the function to the entire C plane. It is this extended

function which is referred to as the Fourier transform of Il(S,Z). This

function can be made single valued by cutting the C plane along

a< )lm(()) <oo, Re(,)=O and along r< )lm(,)J <co, Re(()=O. This ensures

that the square roots have positive real parts. The function S,(ic,() is

'-- analytic over the entire C, plane by virtue of a theorem pertaining to

analytic functions defined by integrals ([41, p. 92; [61, pp. I 1-12).

The inverse Fourier transform of (5.2) is
07

sz s oo + i(
S KsZ) fs,=,) e -is(zd( (5.3)

-00 + io

-. : where ,0 is a real number between -a and a. It is hoped that the final

Laplace inversion of kl(s,z) can be done by means of the convolution

l formula. Therefore, it will be advantageous to cast (5.3) in the form of a

one sided Laplace transform so that the inversion can be performed by

inspection. The required transformation can be achieved by suitably

'@4 deforming the Fourier inversion path into a branch line integral; this is a

- trivial case of the Cagniard-deHoop technique. Consider the case of z>O.

For (5.3) to be a convergent integral when z>O, it is necessary that the

inversion contour lie in the lower half plane lm((,)<O. Since the finite C,

plane does not contain any singularities aside from the branch points at C,

-':i! = +ia and C, = _ir, the original inversion path can be deformed into a new

contour as depicted in Figure 5. This new contour consists of two quarter
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path

22

1 2

a Figure 5. The complex plane showing the singularities of Kl(s31) and

the integration path for the evaluation of (5.3).

circles 1-1 and F2 in the lower half plane, and a branch line path running

upward along the left hand side of the branch cut from -ioo up to the

branch point at C -ia, around the branch point, and finally running down

the right hand side of the branch towards -ioo. That the original integral

in (5.3) is equivalent to the integral of the same argument along the new

path follows from Cauchy's integral theorem. This theorem states that the

01 contour integral of a function which is analytic on and inside the contour

.-- is identically zero [41. The contribution of the integral along the arcs at

infinity F and F2 as Cjtoo vanishes by Jordan's Lemma [I. Thus (5.3)

reduces to a branch line integral. Exploiting the fact that I(S,--) =

where the bar denotes complex conjugation, the branch line integral can be

expressed, after an elementary change of variables, as
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.

~ 00
IS') tVz- s-1/ s rz e-s Im{F(+O*ITi 1z)}d-I (5.A)

az

where

[ C+(2+ 2)/2(CF(t,) = [ c +( 2 +r2 )"II2S+(ic, ) (5.5)

In (5.4), F() is evaluated on the right hand side of the branch cut. The

s-multiplied Laplace transform in (5.4) can be expressed as the Laplace

transform of a derivative, i.e.

k(s,Z) - z- 1 s- 1/2 e-STl -Im{F(+O+il/z))drl (5.5)
7TV az aT1

... There is no endpoint contribution from T =az in (5.5), because F(+O+ia) is

a real quantity. The inversion of (5.5) is now obvious because Ikl(s,z) is

seen to be the product of two transforms. Therefore kl(t,z) is the

convolution integral of the inverses of the two transforms,

_ p t/z
kj(tz) Z-1 J lmF(+O+ i) } dC H(t-az) (5.6):' :: i~tz) S/2 v f t t-(z

" for z>O, and kl(t,-z) kl(t,z). The expression for k! in (5.6) apparently

cannot be reduced further in terms of elementary functions. Some of the

properties of the real integral (5.6) along with an interpretation of the

results are discussed in the next section.
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6. CONCLUSION

Even though the dynamic stress intensity factor history (5.6) cannot be

evaluated in terms of elementary functions it can be evaluated numerically

and some of its salient features can be obtained analytically. Figures 6, 7,

*i 8 and 9 show the results of the numerical integration of the integral (5.6)

for the values of the ratio of the point load velocity to the Rayleigh wave

speed of 0.8, 0.6, 0.4, and 0.2 for a Poisson ratio of v=0.3 (ci/cr2.02).

The time scale has been non-dimensionalized so that v= I corresponds to

the arrival of the dilatational wave at the observation position z along the

crack front. The dynamic stress intensity factor has been normalized by

premultiplyng (5.6) by P-I(TrZ) 3/ 2 .

Following the sudden application of the point loads, a point z along the

crack edge is at rest until the arrival of the dilatational front. This front
is compressive in nature and the crack faces respond to it by initially

trying to close together. This is reflected by the stress intensity factor

being negative initially. The initial jump in the dynamic stress intensity

factor, which can be seen in the graphs, is a verifiable feature of the

- solution of this particular three dimensional loading distribution. For the

case of a pair of line loads acting perpendicular to the crack edge, i.e the

* convolution of the traction distribution (4.1) for v=O, Freund 1] found that

the dynamic stress intensity factor started from zero and gradually became

negative. By taking the limit as t/z I a+ in (5.6) the jump is found to be

27
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nim ki(t,z)(rz) 3/ 2 p- 1 = (6.1)
t/z 4 a +  4 [c+,/rT-a 2 ]S,(ic,O++ia)

The dynamic stress intensity factor becomes increasingly negative

until the arrival of the Rayleigh waves at v=2.02 when it becomes

logarithmically singular. Between r=1 and z=2.02, kl(t,z) also exhibits a

disturbance coinciding with the arrival of the shear front at r= 1.88. This

mild discontinuity in the slope of kl(t,z) is due to a change in the form of

the function S+ as the branch point located at the shear wave slowness is

crossed. After the passage of the Rayleigh waves the crack faces begin to

open, the stress intensity factor increases until reaching a maximum, and

thereafter decaying very gradually towards its limiting value k1(oo,z)=0.

This completes the analysis of the three dimensional stress intensity

factor history for the case of a pair of moving point loads on the faces of

a crack. The solution (5.6) to the problem described by the traction

distribution (4.1) is the fundamentai solution to the class of problems

* involving traction distributions moving perpendicular to the crack edge. In

.. this paper the range of applicability of the procedure introduced by Freund

[11 has been successfully extended to this class of problems. OtherI
situations, such as moving loads along a direction inclined to the crack

edge, can be examined following the same methodology used in this paper.
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Figure 6. The normalized stress intensity factor kl(tz) (Tn 3 12 p-

versus t/az for the case of c/r = 0..
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Figure 7. The normalized stress intensity factor kl(tz) (liz)3 / 2 p-I

versus t/az for the case of cdr = 0.6.
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Figure 8. The normalized stress intensity factor kl(t.z) (rTr)3 / 2 p-

versus t/az for the case of d/r =0.4.
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Figure 9. The normalized stress intensity factor k1(t.,) (Tzi)3'2 p-l

versus t/az for the case of c/r =0.2.
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APPENDIX

In this appendix the factorization of the function !5(;() as defined by

(4.5) is carried out. As mentioned in section 4, the function S( ;() has no

zeros or poles in the plane cut along a< lm( )) <b-, Re(,)=0.

-.,- Furthermore, the function 5(,;(,) has the desired property of being

asymptotic to unity as jT. too. These properties enable one to factorize

S( ;) into the product S+(t;C.)S_(t;C,) by a well known decomposition

technique ([6], pp. 15-17). Specifically, one considers the Cauchy integral

representation for lnS(_;,), that is, one represents In S( ;t,) by the

following contour integral

"- I5( ' ,)d "(A 1)
InS(t.;C,) = ' " ()

The counterclockwise contour r is depicted in Figure 10. By expanding the

*- .contour r to infinity, making use of the asymptotic behaviour of S( ;C.), an

- equivalent representation of (Al) is obtained. The integral (Al) around the

-.- contour r at infinity is equivalent to two clockwise contours r+ and F

.* . around the branch cuts as shown in Figure 10, so that

inS(,;O,) = In S+(;C,) + in S - InS(W;,) dd" (A2)• ' 27ri r + + r_

Thus, the functions S+(;,) and S_( ;,) are given by
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Figure 10. The complex r' plane showing the singularities of SOC and

the integration path ror the evalutlon of (A. I.

As can be seen from (A3) and Figure 10, the functions S+( ;t,) and S-.( ;t,)

are analytic and nonzero in the half planes lm( ) > -a and lm( ) < a.

respectively. it remains to evaluate the contour integrals.

For illustrative purposes consider the function S+ ;) Along the right

hand side of r+, i.e. -b < lm(tj<-a ,Re( )=0>, the Rayleigh wave function

(3.13) has the explicit form

R(0++ i';O (b -2(A

32
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where '6=lm(,). Along the left hand side of F+, R(,;,) is given by the

complex conjugate of (A4). From (4.6)

InS( ;() InR(,) - In[ 2(b 2 - a2)(r+ 2 )1 (A5)

and therefore S+(;() can be expressed as,

In S+(_.) InR(+0+i'f) d'- InR(-Oi2' dd (A6):'-.2T iaf- 2T( -a

-b.-. ""= In [R(+0 i6f)/R(-0 62)]d (A7)

2Tr -a

'""'?:" '" = -- ! tan-1 [ 4 ( t 2 - W2) [( W2 --a2 )(b2 d 2 ) 1/ 2  d" A)

an__ _ __ _ __ __ _ __ _ (A8)':-?" -a ~(b2 + (,2-2 22i+

The function S_( ;() is treated similarly. One further change of variables

tO (2-2)1/2 reduces (A8) to the form (4.7).
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